
A Network Based Approach to Data Access, Visualization,

Interactive Analysis and Distribution

Lee Elson, Mark Allen, Jeff Goldsmith, Martin Orton and William Weibel

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

~ ~~ ~~~ ~~

Corresponding author address: Dr. Lee Elson, M/S 183-5 10, Jet Propulsion Laboratory, 4800 Oak Gfove
Dr., Pasadena, CA 91 109
E-mail: elson@magus.jpl.nasa.gov

mailto:elson@magus.jpl.nasa.gov

ABSTRACT

In today's heterogeneous computing environment of proliferating platforms and

operating systems, the Internet, through the World Wide Web (WWW), is becoming the

preferred interface to much of the world's archive of digital data. WWW browsers are

capable of making the computing environment transparent to users, providing easy-to-use

access to data archives and applications for studying data. As this process evolves, there

will be fewer restrictions as to where data and applications will be required to be stored.

By manipulating data at their source, Internet bandwidth requirements can be reduced.

We are developing an Internet-based, multi-platform visual computing environment

which capitalizes on this trend and provides scientists, working on data either singly or in

groups, with the ability to share tools, regardless of the computational platforms being

used. We will describe the current state of this freely available package as well as

planned future developments.

1. Introduction and background

Computers have been used in the analysis of data, both meteorological observations

and model output, for well over a generation. The recent explosive growth in both the use

of the Internet and in the collection of observational data, together with new requirements

for sharing observations and interpretations, have brought new challenges to tool

2

developers and users. This challenge has been intensified by the rapid evolution of

computer hardware, software and network technology. Our group has been chartered with

creating visualization and analysis interfaces between research scientists and data. During

the past decade, our approach has changed from one focused on standalone client

software on high-end Unix workstations to one in which multiple platfonns, running

different operating systems, must communicate over networks. This article will describe

our progress, including examples of analysis tasks using our freely available software

package, and what we hope to achieve in the future.

There are 2 components to our approach. One involves the transfer of information

among computers and among people, and the other involves techniques for understanding

data through visualization. It is useful to provide a brief history of how our approach has

evolved in both of these areas.

One way of categorizing visualization packages is to distinguish between those

which use procedural programming languages such as the Interactive Data Language

(DL), sold by Research Systems Inc', and those which use so-called visual programming

approaches. The former allows the technically knowledgeable user a great deal of

flexibility in the creation of an analysis or visualization package but requires the

generation or modification of computer code. The latter can be easier to use "out of the

box" but may be less flexible. Adopting the second approach, we developed an

application called Linkwinds (Jacobson et ai., 1994), which is distributed for free. As its

name implies, Linkwinds allows the user to interactively link data, control and display

components in windows on the workstation screen, to produce a unique environment

' http://www.rsinc.com

3

http://www.rsinc.com

suitable for the task at hand. LinkWinds is designed to be intuitive to use, in part because

it requires no knowledge of programming by the user. Many users can learn its

capabilities by trial and error, referring occasionally to its integrated help system. By

writing Linkwinds' code in the C programming language and using X-Windows for the

graphical user interface (GUI), graphical display has been optimized for speed and

efficiency. Ths was crucial since at the time that Linkwinds was conceived,

visualization requirements pushed the limits of workstation hardware, especially since we

sought to provide the capability to handle large data sets.

The emergence of the World Wide Web (WWW) as a tool for distributing data

suggested to us that Linkwinds could be quite useful as a browser 'helper application'.

Just as a simple image viewer allows the interpretation of gd files downloaded from the

WWW, Linkwinds allows actual data files in certain formats to be interpreted and

analyzed directly, after being downloaded from a Website. Working closely with users,

we determined that the transfer of information between people is as valuable as

information transfer between computers when carrying out research tasks. LinkWinds

addresses this need through a utility called Lynx that allows the duplication of an analysis

session on another machine running Linkwinds and connected to the Internet. Lynx is

based on an internal journaling capability that also alloys previous sessions to be

'replayed'.

' Graphical Interchange Format

4

2. New requirements, new approaches

In 1997, it became obvious to us that we needed a new approach to creating a

package for visualization and analysis. Several factors contributed to this conclusion.

Perhaps most importantly, the rapid growth in desktop computer processor speed and

memory size, together with an increase in the use of specialized graphics hardware and a

decrease in prices, brought about a shift in the number and type of desktop computers in

use in the scientific community. Many users have discovered that Personal Computers

(PC's) running either Microsoff Windows or Apple's Macintosh Operating System (OS)

provide a cost effective platform for research related activities including browsing the

WWW and reading email. These users are generally not skilled at running applications

under Unix operating systems. We rejected the idea of porting LinkWinds to PC's since

we would have had to devote significant resources to the creation and maintenance of

such ports at the expense of developing new functionality.

A second factor that influenced our conclusion was the growing popularity of the

WWW for distributing data over the Internet. Not only are there large, rich data sets

available online, projects such as NASA's Earth Observing System (EOS) promise a

dramatic increase in the amount of available data in the next few years. As we'discuss

below, large data sets present both an opportunity and a challenge when one considers the

limited bandwidth of the Internet and the limited capabilities of some desktop computers.

'There are 2 additional trends in the analysis of scientific data, made possible by the

WWW, which were apparent to us. There is a movement towards what is generally called

5

'outreach' activity. Outreach efforts require that interpretations of data be made

understandable to the non-specialist. Second, geographically separated researchers are

tending to collaborate more than in.the past. Email, together with the ability of the WWW

to find and exchange documents and data has fueled this trend.

Given these observations, we decided to create a freely available visualization and

analysis package whose operational components can be distributed over the Internet

through its object-oriented3 design, that inherits the performance and functionality of

Linkwinds, and a package that functions independently of computer platform and

operating system. We felt that Java (Campione and Walrath, 1998; Java Quick Guide,

1999), developed originally by Sun Microsystems, was most likely to fill these

requirements. In making the decision to develop a package using Java, several issues that

are important to developers and users need to be addressed.

a . Performance

Java has evolved with the WWW in mind. It has the ability to transfer an executable

program, called an Applet, from a WWW host to a client's browser. A frequent

observation of this type of WWW application is that it is slow. There are several reasons

for this. First, before an Applet can produce results, it must be transferred to the client's

machine. Once there, the browser must load and execute the Applet. Various browsers do

this with differing efficiency since they have different standards for interpreting Java.

A system designed as a collection of cooperating program elements that consist, in part, of variables with
unique values.

6

These differences can also result in execution errors. Applets also have limits to what

they can do. For example, in many cases, security considerations prevent Applets from

writing to a client's disk.

Applets were designed to fit into today's WWW culture where users fill out forms

on a Web page and await a fairly simple result. In some ways, this is not a very efficient

way of using the Internet. 'Java addresses this through the use of Applications, which do

not need a WWW browser. Applications allow performance to be enhanced in several

ways. If an Application is to be used many times, it can be downloaded once, saving

network bandwidth for other tasks like the transfer of data. Also, although Javais an

interpreted language and therefore executes slower than a compiled language, Just-In-

Time (JIT) compilers have been developed which significantly increase execution speed.

We have found that through careful programming, we can achieve performance that is

very good for most4 desktop platforms used today.

b. Avai labi l i ty and standardization

A second major design goal for Java was to enable the same code (called bytecode)

to be interpreted on any Java enabled platform. This action is carried out by an

interpreter, called a Java Virtual Machine (JVM). As noted above, uniformity is dificult

to achieve unless developers of operating systems and applications adopt standards.

Although Sun Microsystems has kept Java an open (i.e. non-propriatary) system, not all

organizations involved with Java have agreed on a set of standards. At the present time

4 We recommend a processor speed of at least 100 MHz and at least 16 hlB of memory,

7

however, many manufacturers5 have implemented m s which adhere to standards well

enough to allow us to produce a working prototype visualization package. Sun has

developed a JVM.that runs under MicrosoA Windows (95/98/NT) as well as one that runs

under it's own Unix operating systems. Perhaps most important, these manufacturers have

made their JV"s available for free. This is crucial for us since there would not be much

point to our creating a freely available package if users were required to purchase the

underlying interpreter. Although future actions with regard to standards are

unpredictable, we are optimistic that there is a critical mass of cooperating manufacturers

committed to the continued viability of Java.

b. S e c u r i t y and d i s t r i b u t e d c o m p u t i n g

Security and functionality are often inversely related. Any WWW (or Internet)

based visualization package will need to be able to at least write out data to the local disk.

As we shall see, the full potential of a Java based package will require the ability to

transfer data and computational instructions from one platform to another. Security is a

primary concern in the design and evolution of Java. For example, the language itself has

many safety features that make it difficult to inadverteotly (or maliciously) violate safety

rules. Java verifies that bytecode has not been altered. Also, read/write/execute access

restrictions can be configured easily in the latest version (1.2) of Java. Although these

features cannot make an application risk-free, they allow us to build a reasonable amount

of security into our visualization package.

Apple, Silicon Graphics, IBM, Hewlett-Packard and others.

8

As mentioned above, Java was designed for network based distributed computing.

The ability to invoke methods6 from one platform which are resident on another platform

or to bundle up a set of instructions and move them to another platform for execution are

part of the standard Java package. This very powefil feature will play a significant role

in our future development efforts.

3. Webwinds: A Java Visualization Package

In designing our new Java visualization package, we felt that an evolutionary

approach would work best. Since the development of Linkwinds gave us extensive

experience in both what and what not to design into such a package, we began by

building much of Linkwinds functionality in Java. In order to highlight bath the

inheritance from Linkwinds and the new focus on the WWW, we named this new

package WebWinds (Webwinds, 1999).

During the initial development of WebWinds, we encountered dificulties due to

incomplete implementations of Java on several platforms. This is to be expected when

dealing with a new programming environment with ambitious goals, as is the case with

Java. For this reason, and because we have extensive egperience in building our own

GUI's, much of WebWinds bypasses pre-built Java components in favor of our own

custom versions. This allows us greater control over both the 'look and feel' and

functionality of our package.

In order to maximize the utility of WebWinds as quickly as possible, we

concentrated on 4 areas of development. First, we incorporated as much of the display

6 A procedure, like a subroutine, which performs a certain action.

9

and control functionality of Linkwinds as we could. Second, we built data ingestion tools

and capabilities to make it as easy as possible to bring data into Webwinds. Third, we

ensured that collaborative, Internet based capabilities were present and fourth, we

produced documentation and built packages that made it as easy as possible to download,

install and use Webwinds. The discussion that follows describes the capabilities of our

4' beta version, released in January of 1999.

a . WebWinds appl ica t ions s u i t e

Space limitations prohibit a detailed discussion of WebWinds' application tools.

Instead, the reader is referred to our online (and downloadable) documentation

(Applications, 1999). Here we will summarize these tools and provide examples in the

next section. As shown in Table 1, there are 3 types of application tools. Most of the

Display tools are able to handle data with up to 3 dimensions (3D). Two dimensions are

displayed while a third can often be changed. The displayed image is called a 'slice'.

Display Filters allow the user to select which 2 dimensions are viewed. They also allow

the user to select a portion of a large data set for viewing. Control applications act to '

modifl Display applications. Some examples are giveq in the next section.

As was the case with Linkwinds, the fundamental design feature of WebWinds is

the ability to connect, or link together both applications and other elements (collectively

called 'objects') such as those containing data. Each object occupies a window and

windows can be connected using several different buttons. Operations that transfer data

are connected through the use of a "drag 'n drop" button. In some cases, sequential

operations are possible so that these objects can act first as a 'consumer' of information

and later as a 'provider' of information which they may have modified. Control

information, such as that provided by sliders, is exported via a "link" button. Examples of

both types of connections are given below.

The reason for creating objects in windows and connecting them together is that the

user is given flexibility in creating a session. For example, it is common to have one

Slider control 2 different Image displays. Other types of controls (not listed in Table 1)

are unique to a display, and are therefore enabled via a menu button on that display. For

example, selecting 'Crosshair', 'Bounding Box' or 'Grid' is only relevant to the display in

which it is selected.

b. Data i n g e s t i o n and o u t p u t

In order for WebWinds to be useful, it must allow data to be brought into

applications easily. This required us to build tools to read data files in a variety of

formats. For simplicity, we have categorized files into 2 classes: self-describing and raw.

Self-describing file formats, such as Network Common Data Format (NetCDF, 1999),

Hierarchical Data Format (HDF, 1999) and HDF-EOS (HDFEos, 1999) contain

metadata' as well as data and usually can be identified by a special 'magic number' at the

beginning of the file. Raw data, on the other hand, either contain no metadata or contain

metadata that we do not read. Examples of this type of format include files containing

only binary (e.g. floating point) numbers or 'home grown' files where the creator has

added non-standard header information at the beginning. Another common example of a

raw file format is ASCII, or textual data.

' Data about data.

1 1

Webwinds' approach to the ingestion of data is to use a Data Wizard, or GUI-based

input application, to do as much as possible automatically, providing a default

configuration, and then to provide the user with several methods of adding to or

modifying that configuration. Self-describing files oflen provide enough information for

an initial analysis of a data file without any user input. Raw files require the user to

specify such fundamental parameters as the number and size of data dimensions.

Successful data ingestion can involve more than just being able to read certain file

formats. Depending on the capabilities of the user's machine and the size of the data file,

it may be necessary to restrict the amount of data brought into computer memory. For

example, an image with several thousand pixels on a side cannot be viewed on most

computer screens without either reducing the resolution of the image or limiting the

viewed area. WebWinds allows both of these options, which we call sub-sampling and

subsetting, respectively. There are 3 ways in which this can occur. First, if the image is

too large to even fit into memory, (e.g. high resolution, multi-spectral images), the user

can either subset or sub-sample the data during the loading process. Second, if the image

data will fit into memory, but not on the screen, the Display tools will automatically sub-

sample the image so that it fits on the screen. Finally, the user can subset or sub-sample a

data object after it has been read into memory using the Decimatehubset Display Filter.

Data files used by WebWinds may be on the user's local disk or, as long as each file

has a URL', anywhere on the WWW. As described below, files accessible from a WWW

browser can also be imported into WebWinds. This means, for example, that a WWW

* Uniform Resource Locator

12

site that creates data 'on the fly' (e.g. a subsetting interface) can be used to provide input

into the package.

Saving results is an important capability for an analysis package. Currently, a data

object can be saved in several formats, including NetCDF and raw binary. In section 5,

we discuss future enhancements in ths area.

c . Download, i n s t a l l a t i o n a n d d o c u m e n t a t i o n

Webwinds' software and documentation is freely available from our WWW page

(Webwinds, 1999), once the user has filled out a standard non-commercial license

agreement. Although the bytecode is identical for each type of platform, we have created

individual packages for Unifiinux, Windows (95/98/NT) and the Mac in.order to

facilitate installation. Packages for other platforms (e.g. OS/2) will be created soon.

Except for Unifiinux, each package contains the JVM, WebWinds software,

documentation and sample data and is about 20 Mb in size. The Unix/Linux package

requires that the JVM (in the form of the Java Development Kit) be downloaded

separately from the workstation manufacturer's (or the Linux) WWW site. Unpachng

and setup are simple and straightforward for each packgge if one follows the instructions

in the documentation. The amount of disk space required depends mostly on the amount

of data that the user would like to store since the software and documentation require

little storage media.

If the user wishes to use WebWinds as a browser helper application, it is necessary

to configure the browser for this capability, just as it is for most helper applications. The

13

instructions for doing this vary with the platform and are included in the documentation.

If both the browser and WWW server9 are properly configured, clicking on a link wi l l

cause the associated file to .be imported into WebWinds.

WebWinds' documentation is written in HTML" and is available both on the

WWW site and as part of the downloadable packages. Each Application also has a "?"

button which, when pressed, brings up a Java browser showing the documentation for

that object. Thus, for example, if a user brings up a Histogram Application and doesn't

know how to use it, pressing the "?" button will provide a description of that Application.

Included in the documentation package are several step-by-step examples of how to set

up sessions. These sample sessions either use data included in the package or data

available on the WWW. The descriptions include screen shots of the objects being

described.

d. Au tomat i c s c r ip t ing : Rerun and remote s e s s i o n s

By default, each WebWinds session generates a set of commands, called a script,

which reflect the actions performed by the user. These commands are automatically

saved in a file that must be renamed if a permanent version is desired. Any of these script

files may be run during a WebWinds session and, with certain restrictions, may be run on

other machines. Not only can a user easily re-create a session that was found to be useful,

but such sessions can be given to collaborators for their own use. A data provider can set

up a WWW site containing both data files and script files. Links to script files on a

The WWW server must be configured to assign the correct mime type to a file. For example, an HDF file

HyperText Markup Language, the language used by the WWW.
should have the type applicatiodx-hdf. The user has little control over the sewer's configuration.
10

14

WWW site allow the user to import the scripts into WebWinds so that the process of

setting up a session can be made automatic, once WebWinds has been installed. In

addition, our development team can use script.files to either help users with problems or

investigate bugs in the WebWinds package.

The scripting language developed for WebWinds serves another purpose. It enables

users to establish remote, shared sessions with other WebWinds users on the Internet. To

do this, one user requests a shared session with another party by supplying an Internet

address. If WebWinds is active at this address, a dialog box will open there asking for a

connection. If the second user approves, all objects opened on the first user's desktop will

open on the second user's desktop as well. The second user may also request a shared

session with the first user, resulting in a collaboratory environment. In order for shared

sessions to work properly, identical data files must be available to both users, either on

their respective local disks or on the Internet. Because only scripting commands are

exchanged, these collaborative sessions can be carried out over low bandwidth

connections.

4. Sample Sessions

One way to illustrate the capabilities of WebWinds is to show examples of how it

might be used. Because of space limitations, we can only present a very limited

introduction to the use of the Applications shown in Table 1 . Our WWW site has several

additional examples that give a more complete description of how to use the

15

Applications.. Some of the screen shots shown below may differ from what the user will

see due to changes in the released version of the software after the time of this writing.

~ Here, we offer 2 examples of how data might be brought into WebWinds and

examined. Each example has a script file associated with it so that the user can create

each session by simply selecting the appropriate script. For the first example, the script .is

included with the distribution package and can be selected under the 'Rerun' option of the

'Utilities' menu. The script describing the second example is available at our WWW site.

a . Tota l Ozone Mapping Spectrometer monthly averages

The first example examines data from the Total Ozone Mapping Spectrometer

instrument. These data represent monthly averages of total column ozone for 12 months

in 1992 and 1993 and are contained in an HDF file. There are 2 approaches that can be

used to import these data. One approach would be to use the interactive Data Wizard to

select the file and change or add to its metadata. This is the approach used in the second

example, in the next section.

Another approach is to insert information about the observations into the

WebWinds file, datamanager.txt. This file characterize8 data sets used by the package

and is organized into Data Folders, Data Sources, file Formats and conversion types.

Folders can be nested (one inside the other) so that they can contain other Folders or Data

Sources in analogy with (but not directly related to) folders and files on a computer disk.

Data Sources speci& more than just the location of a source file on a disk. In addition to

file name, path and type, they contain information about the dependent and independent

variables and associated color palettes. Table 2, modified slightly from the

datamanager.txt file distributed with the package, contains a Data Source listing that is

used in this example. The first line assigns the name '92-93' to this Source which will

appear in the Desktop menu under 'File' -> 'Open'. The second line specifies the name of

the file to be used. This can be a URL if appropriate. The third line indicates that the file

is in HDF format. The fourth line is not really necessary but is included as a reminder that

several simple mathematical conversions can be carried out as data from a file are loaded

into the data object. The next 4 lines define the dependent and independent variables,

giving them names, axis numbers, units and value ranges. Note that we have changed the

units in Table 2 to better reflect the associated variables and that the independent

variable, here called 'Ozone' is always called 'axis 0'. The last line assigns a pre-

constructed color table, called 'rgb', to the data set.

Since the Data Source just described is similar to that included in the WebWinds

distribution, no additions to the distributed datamanager.txt are required, although one

might change the units for consistency. WebWinds, when started, first produces a

Desktop window as shown in Fig la. As described above, from the 'File' menu, first

select 'Open', then scroll down to and select '92-93'. This brings up a data object that

displays metadata read fiom the file and fiom datamanager.txt. Pressing the 'Load' button

causes the data in the file to be read and produces the data object represented in Fig 1 b.

Next we wish to display these data. We do this by first selecting 'Image' and then 'Slider'

from the 'Tools' menu on the Desktop. With the mouse cursor over the "drag 'n drop''

button in the upper right corner of the data object, press a mouse button and move the

cursor to the Image before releasing the button. Do the same with the Slider. Finally, in

order to tell the Slider what it will control, connect the link button (the button with

17

interlocking rings) on the slider to the Image. The results are displayed in Figs I C and Id.

The Image shows the distribution of column ozone averaged over a particular month. The

month displayed can be changed using the Slider. Notice that the Image and Slider both .

show, in numerical form, the month being displayed in the Image.

There are several additional things to note about the Image. One is the presence of a

Crosshair that can be moved using the mouse. The value of Ozone under the Crosshair is

displayed just above the image itself Another is that if one selects 'coast 180' from the

'Overlays' menu, a white outline of the coastlines of the world appears in the Image.

Although the script file for this example stops with the displays just discussed, there are

several additional features that can be noted. Pressing the 'LinePlot' button on the Image

produces an X-Y plot for the point under the Crosshair, as shown in Fig 2a. For this

example, this is a plot of column ozone as a function of time at the latitude and longitude

of the Crosshair. Notice a significant annual component to the variation in the LinePlot

window. As the Crosshair is moved, the LinePlot is updated. A similar tool, called Profile

can be selected fiom the Tools menu. This tool displays an X-Y plot of data across an

arbitrary path in the Image. First, use the "drag 'n drop" button to connect the data object

to this new tool. Next, follow the directions in the Profile window and link' the Image to

the Profile. In order to draw a profile on the Image, select Draw Profile Line' from the

'Profile Line' option on the Image 'Menu' button. Then use the mouse to actually draw the

line on the image. The result, shown in Fig 2b, was produced by drawing a vertical line at

0 degrees longitude. Therefore, it shows ozone as a function of latitude at that longitude.

The mid-latitude ozone peaks, as well as the equatorial minimum is clearly visible.

18

b. Cl imato logy In te rd isc ip l inary Data Collect ion

The second example uses data from the Goddard Distributed Active Archive Center

(DAAC)". Our intent is to demonstrate that any file accessible on the WWW can be

treated as if it were a local file, apart from the latency inherent in the process of

downloading the data. We believe that this has relevance to data producers, providers and

users.

We have chosen to use products from the Climatology Interdisciplinary Data

Collection12 because of the availability of data representing observations of several

atmospheric and surface parameters which have been mapped to a common grid. It is

important to note that data need not be on a common grid to be compared in WebWinds.

This example differs from the previous one in that the data are not self-describing, i.e. the

files contain no metadata. Instead, each file holds data in floating point format and the

user must read the documentation to know how to interpret the numbers in the file.

To begin this session, we start WebWinds as in the previous example, obtaining the

Desktop window (Fig. la). Next we select 'New Source' from the Files menu, obtaining a

window similar to that in Fig. 3a. Here, we must enter the U R L 1 3 for the first data file we

wish to use in the text pad marked 'Current File'. We've selected surface temperature data

derived from the TOVS (TIROS Operational Vertical Sounder) instrument. With the file

selected, press the 'Open' to get an ObjectDisplay' window. Because this file is not

recognized, the user must select a file type from the 'types' menu button. The appropriate

I 1

12

13

http://daac.gsfc.nasa.gov/DAAC-DOCS/gdaac-home.html
http://daac,gsfc.nasa.gov/CAMPAIGN_DOCS/FTP_SITEhnter_disc.html
Ap://daac.gsfc.nasa.gov/data/inter~disc/tovs~atmo_~und/tsu~1988/tovsng.tsurf. lpmegg.8801. bin

19

http://daac.gsfc.nasa.gov/DAAC-DOCS/gdaac-home.html
http://daac,gsfc.nasa.gov/CAMPAIGN_DOCS/FTP_SITEhnter_disc.html

value here is 'RawFloat'. When this selection is made, several other required fields appear

in the window, as shown in Fig. 3b. Since the data are 2 dimensional, the number '2' must

be entered in the Number of Dimensions' text area and '360 180', indicating that the data

represent a 360x1 80 (longitude x latitude) array, must be entered in the 'Size of

Dimensions' area. Finally, a title should be added to the 'Title' area. We've chosen

'Surface Temperature'. With these specifications complete, pressing the 'Open' button

checks to see whether the user has entered illegal choices. If not, another press of the

open button causes the window to display a summary of the data attributes, includmg

default metadata (in the "eta Data' window) describing the dependent and independent

variables. At this point, no data have been read from the file. Pressing the 'Load' button

does this, providing information about the data values in the file, as shown in Fig. 3c.

Notice that the metadata window shows default names for the variables. In order to

change these names, as well as the units and data ranges, the user must click on each of

the metadata lines in turn. For example, clickmg on the first one, titled 'Value' brings up a

separate window, Selecting 'Edit' from the menu button in this new window allows the

independent variable to be given the title 'Temperature', as illustrated in Fig. 4a. Notice

that the 'Start Value' was changed from -999. to 0. This was done to eliminate the 'no

data' values in the file. In order to make this effective, the 'Limit Data' Control Flag must

be checked. To make these metadata changes effective, 'Apply' must be selected from the

menu. This window can then be closed. The 2 dependent variables, longitude (- 180 to

180) and latitude (-90 to 90) (called 'Row' and 'Column' in Fig 3c) can also be edited

using the same approach. When all metadata have been modified, the 'Load' button on the

object display must be pressed.

20

With one data object created, it is time to choose a second for comparison. We've

selected outgoing longwave radiation (OLR) data derived from the Earth Radiation

Budget Experiment (ERBE). Again, starting with the 'New .Source' option from the Files

menu, we can create an OLR data object. The U R L I 4 will be different of course, as will

the dependent data variable as specified in the metadata window. Be sure to press 'Load'

on this new data object, once all modifications have been made to metadata.

With 2 data objects created, we return to the Desktop and select 'Image' from the

Tools menu. Use the "drag h drop" button in the upper right comer of the Surface

Temperature Object Display to connect the Temperature to the Image. Next, select '2D

Scatterplot' from the same Tools menu and first drag the Temperature and then the OLR

objects into it. As shown in Fig. Sa, the resulting display shows a scatterplot, as well as

some simple statistics for the 2 data sets. There appear to be 2 distinct regimes for

correlations between OLR and Surface Temperature. Notice that the scatter diagram is

color coded. The colors correspond to different locations on the earth's surface. A more

precise way to determine the geophysical location of points in the Scatterplot is to select

'Resize Bounding Box' from the 'Bounding BOX' submenu of the 'Menu' button on the

Scatterplot. As shown in Fig. Sa, this allows'a box to be drawn over a portion of the data

in the scatter diagram. If we now use the link button (top right button) in the Scatterplot

to connect this display to the Image, we see the data points inside the box are highlighted

in yellow in the Image window (Fig 5b).

WebWinds has a second tool that is useful for comparing 2 data sets. From the

Tools menu, select 'WindowTool'. As with the Scatterplot, first drag the Surface

14 ftp://daac.gsfc.nasa.gov/data/inter~disc/radiation~cloudslerbe~ra~~988/erbe.lwolr. lnmegg.8801 .bin

21

Temperature Object Display, then the OLR Object Display into this tool. The result,

shown in Fig 4b, is a display with Temperature in the background and OLR in a small

inset window. The inset can be resized and moved over the background image.

5. Future Work

In the next year, we plan to enhance existing features and add new ones. Since

saving results is important, we plan to add several file formats to our file save menu,

including HDF. We also plan to add a capability to save image results as P E G ” or

Postscript files suitable for publication. Also on the drawing board are several 3D

displays (e.g. data on a globe or a transparent 3D image) and an animation tool that will

allow the user to record displays as they change in response to control changes.

As we discussed in Section 2, components of a Java application can be easily

distributed over the Internet. Ths will allow us, for example, to move parts of WebWinds

to a server that can access data sets through local, high bandwidth connections. By doing

this, the process of selecting only the data that is needed can be made much more

efficient. Suppose data are organized at an archive so that very high spatial resolution

global, atmospheric observations are stored in large files, each of which represent data

taken during a 24 hour period. If a user is interested in a time series of observations over

a limited geographical region, the normal process would be to obtain large amounts of

data, most of which would be discarded. By placing subsetting software near the data

source, the user would be able to avoid this inefficient transfer method, and would be

’’ Joint Photographic Experts Group

22

able to access the data of interest much more quickly. We plan to develop server

packages that would carry out these processes in the near future. We also plan to build

interfaces to other database management systems, making it possible to carry out more

sophisticated data queries and have the results fed directly into display and control

applications.

Further in the future, it should be possible to move parts of WebWinds from one

platform to another. Suppose there is a mirror site for a particular data archive. A 'roving'

version of WebWinds might assess the load level at several sites to determine which one

would perform a function fastest, then move parts of a session to that site. Similarly, a

user might enable an auto-update feature that would allow software updates or additions

for his client machine to occur automatically, but only when needed. Finally, we intend to

create 'builder applications' that will enable novice users to create their own Applications.

The amount of compute power connected to the Internet is enormous. Java offers a

method for harnessing that power in a way that is invisible to the user, but highly

beneficial to the scientific community.

Acknowledgments. This research was performed at the Jet Propulsion Laboratory,

California Institute of Technology under contract with the National Aeronautics and

Space Administration.

23

1

References

Applications, cited 1999: WebWinds Applications Suite. [Available online at

httr>://webwinds. i~l.nasa.gov/beta4/webpage/webhel~. html] 9 ~~

Campione, M. and K. Walrath, 1998: The Java Tutorial, Addison-Wesley, 964pp.

[Available online at h~://iava.sun.com/docs/books/tutorial/index.html]

HDFEos, cited 1999: HDF-EOS. [Available online at http://ecsinfo.hitc.com/iteams/HDF-

EOS/HDF-EOS. html]

HDF, cited 1999: Hierarchical Data Format. [Available online at http:/kdf.ncsa.uiuc.edu]

Jacobson, A.S, A. L. Berkin and M. N. Orton, 1994: Linkwinds: Interactive Scientific

Data Analysis and Visualization. Commun. ACM, 34,43-52.

Java Quick Guide, cited 1999: A Quick Guide to the Java Platform. [Available online at

httr>://iava. sun,com/nav/whatis/index. html]

NetCDF, cited 1999: Network Common Data Format. [Available online at

httD://www. unidata. ucar.edu/Dackages/netcda

24

http://ecsinfo.hitc.com/iteams/HDF
http:/kdf.ncsa.uiuc.edu

WebWinds, cited 1999: WebWinds [Documentation and software available online at

http://webwinds.jpl.nasa.gov]

25

http://webwinds.jpl.nasa.gov

Tables

Table 1. WebWinds Applications Suite
I

Disdav Filters
DecimateISubset

Changes the viewing axes of a data set View Axis
Creates a new data set from a portion of ah old one

Controls
Calculator .

Choose offsets for Combine only Combine Slider
Choose/manipulate color palettes Color Tool
Allows algebraic manipulation of data for Combine

~ 3-Slider Choose offsets for Window Tool only +

RGB Slider
Pick a slice for any application to use Slider
Choose 3 data slices as inputs to a color display

Table 2. Excerpt from datamanager.txt
Datasource "92-93"

file "Ozone-Dec22-09063 1-0. hdf"
format "HDF"
converter '"'
meta "latitude" "degrees" axis 2 entries 180 range 90.0 -90.0
meta "longitude" "degrees" axis 1 entries 360 range 359.0 0.0
meta "time" "months" axis 3 entries 12 range 1.0 12.0
meta "Ozone" "DU" axis 0 entries 254
colorhint "rgbi'

26

Figures

m

Fig. 1 a) The Desktop is the top level window. b) The Object display for TOMS Ozone c) The TOMS

data in an Image display and d) A Slider used to control the time

slice.

2
0
0

1
0
0

0 n 75 5 75 1 h

Fig. 2 a) A LinePlot showing Ozone versus time. b) A Profile showing ozone versus horizontal positior

Fig. 3. The object display used to a) locate a file, b) specify file parameters, c) represent a loaded data

object.

Fig. 4 a) An example of a Metadata object showing labels, units and values. b) A WindowTool object

containing an image showing surface temperature in the background and OLR in the small inset windo

Fig. 5 a) a 2-D Scatterplot showing the relationship between surface temperature and OLR. The scatter

points are color coded, representing different spatial locations. b) an Image showing the surface

temperature data. The yellow area shows the location of the data inside the red bounding box in the 2-1

Scatterplot.

